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1. Introduction. Inference problems in variance components models have been
investigated extensively in the literature. These include estimation of fixed
effects and variance components (the latter mostly by the MINQUE method and
its modifications) as well as tests of hypotheses for both fixed effects and
variance components in general mixed ANOVA models. For such models with
balanced data, it is known that the usual tests for fixed effects are optimal
(UMPU, UMPI) [vide Seifert (1978, 1979)1. However, for tests on variance
components, optimal tests are known only for special models like the one way
classificaiton model and two way classification model with or without
interaction {vide Herbach (1959), Spjetvoll (1967), Das and Sinha (1986)]. Some
exact tests are obtained in Seifert (1981, 1985). It may be mentioned that the
recent book by Arnold (1981) while dealing with tests of variance components

mentions no optimum tests but only some valid exact tests.

In this paper a general balanced ANOVA model with mixed effects is
considered and UMPU and UMPI tests are obtained for hypotheses on fixed
effects as well as variance components. The tests are derived under the
usual assumption of normality of the random effects and it is shown that the
tests coincide with the stiandard F-tests. Null, nonnull and optimality
robustness of the UMPI test [vide Kariya and Sinha (1985)] against suitable
deviations from normality of random effects is established. It may be
mentioned that for unbalanced mixed effects models, even though exact tests
are available in some cases [vide Thompson (1955a, 1955b), Thomsen (1975),
Pincus (1977) and Seely and El-Bassiouni (1983)], the problem of deriving
optimum tests for variance components in general is still open (see, however,
Das and Sinha (1986) and Spjetvoll (1967) for the one way unbalanced random
effects model). This is currently under investigation and will be reported

elsewhere.

2. Mixed Models with Balanced Data and a Canonical Form.

The model under consideration is

(2.1) Y = )(lozl A Xkak + Zlu‘ +...+Zcuc.

Here Y is the n-dimensional vector of observations, X‘ = ln (the n component

[ofateh §
NP TR
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vector of ones), « LT the general effect, mi’s are the vectors of fixed
effects (i = 2,...k), uj’s are the vectors of random effects (j = 1,2,...c-1)
due to the various factors (crossed or nested) and their interactions. We
assume that Zc = In' the identity matrix of order n, and u_ is the vector of
experimental errors. The uj’s are assumed to be independent random
variables distributed as normal with means 0 and covariance matrices

ofx LG =1,2,...0) (03 >0 for j=1,2,...c~1 and 0: s 0). Thus E(Y)

’
1£1x1¢1 = Xa, where X = (xl:....x ) and &« = (a ,...,ak) and D(Y) =
c
vV = gicgvj, where V‘j = Zj23 (j = 1,2,...,c) and Vc = In. Each Xi (and each
Zj) 18 a kronecker product of identity matrices and the vectors 1 of

appropriate orders. Hence V‘j is a kronecker product of I and J matrices,
where J = 11°. For a detailed description of models with balanced data, we

refer to Seifert (1979) or Anderson et. al. (1984).

Let Pi(i = 1,2,...,k) and % {j = 1,2,...,c = 1) be projectors where
P = % Jn such that Y'PiY and Y'QJY are the sum of squares due to «j and uj
(as in the fixed effects models) respectively. Clearly P;i’s and Qj’s satisfy
PiPg =0 (i = ¢), QjQ¢ = 0 éj 2 t) and PjQj = 0 for all i and j. The error
sum of squares is Y (I, - L Pj- ?;’QJ)Y = Y Q.Y (say). We note that each
P;j (and each Q;) is a kroné;ﬁer proa;ct of matrices of the form Ig, % Jp and
I4 - % Jq4 (this follows from the rules for writing down the sum of squares
for balanced data given in Searle (1971, pp.389-404); see also Seifert (1979),
Section 2). Consequently, for each i and j, V.P, (Cand V.QJ) is either zero
I G;Vi, we get VF"j = ﬁij

i=1
and VQ\j :6\50‘j y, where ﬁj and 6j are positive linear combinations of ci"s.

<

i
or a multiple of Pj (respectively Qj)‘ Since V

Hence
(2.2) ) % VP f vQ Z 8.P, E é.Q

. = .+ . = + Q..

Jj=r J J=r J jsa J J J=r J J
Consequently
(2.3) v o= leoJPJ + 5 7,Q;, where o = 1/f; and 7, = 1/4.
k .

If P= I P, then Xf = PY is the BLUE of X8. 1If rank (P.) = p. and rank
(@) =4, ih IR B ) v

) = n = o, r.J).

PR L =1 Jd §=a d
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L~ Using the above expressions for v' and |V|, and using the relation
>, (Y - XB)'V (Y~ XB) = (Y- PY)'V (Y- PY) + (PY - Xg)'V '(PY - Xp) =
] -~ - (o1
Y Qv ‘QY + (PY - Xﬁ)’V l(F‘Y - Xf) (where I - P =Q = } Qi)' the density of
i=1

k)
):‘_ Y can be written as

S (2.4) £(y) = (2m) ™7 ( [_I J/=)( r_rf %/2) exp(- 2 [‘f 'y

. ) ) T

[

:3; o+ i§,°i<siy EANCHERNID

,j where we write F‘i = slsl(s S, = Ipi) andp'r.l = S’iXﬁ. The pa:‘ameter space is

0 = {f.o,vzrj >0, Vj; e, > 0. vi; v, £t R}, vi}. Clearly §.Y (i = 1,2,...,k)

ﬁ: and Y’QJY (j =1,2,...,¢c) jointly form a complete sufficient statistic. From
.'E the definition of TS and eJ, it follows that ——-E(Y Q. Y) = —l— and

:ﬁ '—l—E[(SY—y)(SY—‘r)] L. ThetemgrYQYanda(SY—y)

S (S Y - 7 ) are 1ndependent and hgve central chlsquared dlstrlbutlons w1th

.,;:E degrees of freedom qJ and ) respectively (see Searle (1971), p. 409). The
'.3" hypothesis of interest on the fixed effects is Hy :'ri = 0 for any given i. An

’ exact test can be obtainic’ipii/;i coincides with one of the fJ.’s. Thus, if

~. e, = T then under H .W—I—YT has central F-distribution. For many

i balanced models, testing o;-O is equivalent to testing if two ‘rJ.'s are equal.

:. For testing HT:Ti = 'rJ., an F-test can be obtained similar to the test for H

) described above.

f\

'.:: Remark. It is not always true that e; will coincide with one of the Tj’B. It is
i. also not true that a’iz 0 is always equivalent to the equality of two 7j's. A
% counter-example for the latter is a balanced model involving 3 factors A, B, C
- and the two factor interactions AB and AC, where C is nested within B and all
5:;' the effects are assumed to be random. The expected values of the various
t‘;,; sum of squares are given in Table 9.4 in Searle (1971), p. 394 (also given on
. p- 411). It can be verified that o2 g 0 (in Searle’s notation) is not equivalent

"' to the equality of two 7;j’s in our notation.
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2 3. Optimal Tests and Their Robustness.
P Writing v, = Y’QJY (J = L,2pc) and w, = S;Y (i = 1,2,0..,k), it
o]
" follows from (2.4) that the joint density of ViseeeaVos Wopee Wy is given
A" by
;! q_
; (3.1) (r,0) [ v, ST v 3 ) ( )1
. . c(r,eo v, xp(- = TV, o.(w, — 7. w., - 7.
g » i j=1 J expl™ 3 jsr JJ iFa it L4 i~ 7
. a) To test H '7k =0vs H '7k 2 . Assume ®x = T, SO that an exact
' test is the F-test based on w w, /v . If 7k is a scalar, then it
W follows from standard results of multiparameter exponential family
;; that this test is UMPU (see Lehmann (1959), Chapter 4). However, if
the dimension of 7K is more than one, then a UMPU test does not
exist. In this case a UMPI test (which coincides with the above
F-test) can be derived easily. For this, we note that the above
P
4 testing problem is invariant under the group of transformations
: (vl,...vc w ,...,wk) > m(vl,...,vc,wl B W ket + Bt Pwk),
where a > 0, pi’s are arbitrary vectors and P is an orthogonal
»
& matrix. A r’naximal invariant with respect to the above group is
. ww. v, v, ,
o R P ) = (TI,Tz,...TC) = T (say). The null
By 1 1
A distribution of T can be computed as
» Cc q-
. (3.2) Constant x ]I eil/’h(T)
4 1=2
-
% T, 2ip, + E .9
- 2%k !
[1 + Gz 1+T -+ €c 1+T ]
s T. N
v where ti = ;l and h(T) is a function of T. Thus, under H,,
1
j Z=(Ty/1 + T)ye..,Tc/1 + T,) is sufficient for the nuisance parameters
y
‘0 (t:,...,t C) and it can be shown that the distribution of Z is complete.
On the other hand, the nonnull distribution of T is given by
.-: C 3 7 7 r
9 (3.3) 10 ¢ 1/’h(T) kK
3 — T T Fq.]
B - - + R u—
[1+ ¢ —o 4 ... + ¢ —o | 2“’1( S
) 2 1+T, °r c 1+T,
-
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Y where d'r > 0 are constants. Given Z, this is monotone in T,/1 + T,.
':L Since the null distribution of T,/1 + T, is independent of any
] parameters, it follows from Basu’s theorem (Lehmann (1959), page
‘: 162) that T,/1 + T, and Z are distributed independently, under H,.
-:;‘, Consequently, the teat based on T,/1+ T,, i.e.,
\ 4 the F-test based on T,, is UMPI.
sy
4 . .
\:’ b. To test H:r =+ vs H:! T > 7  1[n this case the F-test based on
-:: va/v, i8 clearly UMPU. To show that the same test is also UMPI, we
note that the above testing problem is invariant under the group of
g transformations (v yeeosV W 4ee,W ) D (av ... av \/: (w + p ),
A, c’ k 1 c 1 1
‘:: »/— (w + "k))’ where « >~ 0 and pi’s are arbitrary vectors. A
ot v v
'_::- maximal invariant is (v—z ,...,v—c ) = 1% (say). From (3.1), the
1 1
= density of T* is obtained as
»
R q/2 "
D) * _ —
N (3.4) f(T¥le) = c()[1 + ¢,1, + ... + ¢ T ] ¥V h(TH
N
’ where q = g q and G = -rj/rl s J = 2,...5¢c. Under the null
» T3 T
'r_T hypothesis H_: €, = 1, (1+Tz ’”"1+Tz) is sufficient for the
- nuisance parameters (Ga,....ec) and it can be shown that its null
S
! distribution is complete. Arguing as before, it can be seen that
prs the test based on v, /v, is UMPIL.
2
j— We shall now discuss briefly the robustness of the above tests when Y
:;:: has an elliptically symmetric distribution. Thus the density of Y is
'R .
e (3.9) £ = Wiy - %)V (v - %8))
:;: where ¢ is a nonnegative function on (0,=) satisfying I nc'(\n’u)du = 1.
R
- Write oJ. = sgsg and wj = s* Y where $¥’ s"‘; =1Iq., J = 1,...,c. Making the
4 orthogonal transformation: Y s> W= (W wk,w’l’ ,W:’)’, it follows that
-" the density of W is
-
& (3.5) £w) = ( [ o2/ f +59/5)00 § v W'+ § o (u ) (w )]
“w [ 2% - . . . . . . . . . .
:_' J":] J J':; J ‘j‘:l J J J i=1 1 1 71 1 71
9
s
L
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(3.5) and the result of Dawid (1977), the numerator of R simplifies

i

M Y

r -7 -

"

'::-.: Since ¢ is arbitrary, it is clear that the standard argument of multiparameter

f:‘- exponential family to claim UMPU properties of the appropriate F-tests for

::::: the hypotheses Hyiyy = 0 and Hyir, = 7, breaks down. However, the

; principal of invariance still applies and the following results hold.

'-*‘. r

"

-'::-': (a)’ For testing Hyiyx = O versus H,!yx * 0, assuming ey = 7,, the

'\j F-test based on v;;wk/wf’wf, which is the same as vk’wk/v“ is

' UMPI whenever ¢ is convex. This test is also null robust. This

‘:._ follows essentially from Kariya (1981).

" Y

i, (b)’ For testing Hs:r, = v, versus H,;:r, > T,, as already observed, the
problem is invariant under the group G of transformations

':'_-'. {g:8 = (@, pyyeepsk), « > 0, pi’s are arbitrary vectors} acting on w

Lo

:::::: a8 g{w) = «{(w, + p,)’,...,(wk + pk)’,w’f,,...,wé’ . Then daty .., dpy

N da/a is a left invariant measure on G, then applying the

- representation theorem due to Wijsman (1967), the ratio of the

" nonnull to null distributions of T is given by

R

J_‘. -1

o | £ ln)3 ™ dw . . .du da/a

! n‘__- G

: (3.6) R = =

o [ feon 185 dn . .. du, da/e

.'_'_: G

‘:::f-:_' where J is the jacobian of the transformation w - g(w). Using

to

LV
. 23

»
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2 § ’
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<5

»
»

gn'y
£

lr
.

k p. c q; °
[} J/’ T,J/z «
@.7) (/2L 7% Js IRp, JHpk°[

it

2 k ] n
+ o i)zfloi(wi - y) (W o =y ] e de L diy da/a

.I 'l .‘
Yot e e

c q. ° . c g
(1 T?J/’)J‘ o’ F 1wk wk)a" % da
FEIE 0 FETR M B

2000

k)

i
1]

C q. c , _ _ . .
(jH(T‘jJ/z)(‘jng‘ng wj) (n S)/l‘{ vl.o.(m:)an s ‘da}

..

_A
(e
.,

&
0

_'r .'v h)

where ;(x) = J'Rp'“. prko(x + u:ul 4.4 u]:(uk)dui...duk and s =

e - o j.if‘
a s 5}.‘?}"} (RPN N
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Since the denominator of R corresponds to the expression in (3.7) under Ho,
follows that the ratio R is independent of ¢. This means that the normal
theory result obtains. Consequently, we have established the null, nonnull

and optimality robustness of the F-test based on v,/v,. See Kariya and Sinha
(1985) for detail.
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